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a b s t r a c t

How tropical cyclone (TC) activity varies in response to a changing climate is widely debated. The accu-
mulated cyclone energy (ACE) is one of the indicators of TC activity and has attracted considerable atten-
tion because of its close relationship with the damages caused by TCs. Previous studies have focused on
detecting long-term trends in global ACE; however, the results are inconclusive. Here, it is revealed that
the global ACE demonstrates a striking interdecadal variation over the past four decades, with a historical
peak occurring in the 1990s. A close relationship between the interdecadal variability of the global ACE
and the Interdecadal Pacific Oscillation (IPO) is also identified, with a Pearson correlation coefficient of
0.75 (P < 0.01). When the IPO is in its positive phase, more TCs with a longer lifetime occur owing to
greater coverage of weak vertical wind shear (VWS) conditions over the tropics. The coverage of weak
VWS conditions can be verified by either prescribing the observed sea surface temperature in atmo-
spheric models or the observed IPO in coupled models, indicating the significant role of the IPO. Our find-
ings show that the IPO affects the interdecadal variability of global TC activity through moderating
atmospheric circulations.

� 2024 The Authors. Published by Elsevier B.V. and Science China Press. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The question of how global tropical cyclone (TC) activity could
vary in response to a changing climate is important [1–8], as TC
events are among the most devastating natural hazards occurring
worldwide [9,10]. The accurate prediction of potential TC losses
can be considered relevant to some integral metrics of TC activity
[11]. An indicator among these metrics is the accumulated cyclone
energy (ACE), which combines information on individual parame-
ters, including number, intensity, and duration [12]. There is a sta-
tistically significant correlation between economic losses and ACE,
even though this indicator does not account for whether TCs make
landfall, suggesting that years with high ACE have a greater overall
potential for TC-related losses than years with low ACE [13].

Many studies have investigated the effect of long-term global
warming on the number, intensity, and duration of TCs, however,
the implications of the integral metrics are inconclusive due to
the superposition of opposite contributions from these individual
parameters [14]. Theoretical and numerical studies suggest
decreasing frequency and increasing intensity in a warming cli-
mate [5,15,16]. A decrease in the global mean duration of intense
TCs is observed, with an inverse relationship to the increase in
intensity [17]. Although global climate models can provide
physics-based simulations of Earth’s climate, such models, in gen-
eral, do not simulate TC activity accurately enough [18]. Most of
the models under-resolve TCs [7], and there are large uncertainties
in simulating atmospheric circulation that can influence TC activity
[19,20]. Many efforts have been made to detect anthropogenic
signals in TC activity over the historical period [4–6,21,22]. Since
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the introduction of geostationary weather satellites in the 1970s,
TC observations have generally been considered accurate [6]. Based
on satellite data, it was argued that the global ACE exhibited an
increasing trend from the 1970s to the 2000s, highlighting the role
of the warming ocean [1,2]. In contrast, a decreasing trend in global
TC activity since the 1990s was shown [23]. The confidence in
these detection analyses is relatively low, as the historical record
may not be long enough to conclude any long-term trend, particu-
larly in the presence of interdecadal variability [24–27].

Contradictory evidence on the trends in global TC activity dur-
ing different subperiods may imply a possibility: global TC activity
may be primarily influenced by interdecadal variability rather than
a long-term trend. Previous research [28] has noted a historical low
in global TC activity near the 2010s, but the possible reasons
remain unclear. Note that the climate system is manifested not
only by an increase in global average temperature but also by
internal climate variability, e.g., the El Niño–Southern Oscillation
on the interannual scale and the Interdecadal Pacific Oscillation
(IPO) or Pacific Decadal Oscillation on the interdecadal scale
[29,30]. There has been considerable effort from academic and gov-
ernment climate scientists to predict basin-wide statistics of TC
activity, and the influence of internal climate variability on regio-
nal TC activity has been noted [26–27,31–33]. This raises questions
about how global TC activity might exhibit interdecadal variations
over the past few decades and whether these variations are related
to low-frequency fluctuations in the climate system. Certain statis-
tics of global TC activity have been shown to correlate with indices
of internal climate variability [1,23,28,34]. However, the key mech-
anisms driving global TC activity, and whether these mechanisms
are natural or anthropogenic, remain largely unexplored.

2. Data and methods

2.1. TC data

TC data are obtained from the International Best-Track Archive
for Climate Stewardship version 4 [35]. TC data over the eastern
North Pacific and North Atlantic basins are provided by the
National Hurricane Center, and TC data over the remaining basins
are provided by the Joint Typhoon Warning Center. The global
best-track data since the 1980s are considered to be of high quality
because geostationary satellites have been routinely used in mon-
itoring TCs. The North Indian Ocean basin is excluded from the
sample because there are few TC events. The best-track dataset
provides estimates of TC intensity and position every six hours
using measurements from in situ, radar, and satellite systems. To
confirm the robustness of the findings, we have also examined
another experimental TC dataset, i.e., ADT-HURSAT dataset [6], in
which TC data are derived from satellite data for the period of
1979–2017 subsampled uniformly to 8 km horizontal resolution
[36].

In the satellite era, an essential aspect of intensity estimation is
to identify the presence of a TC eye in a satellite image. When a TC
is in the weak stage of no eye scene, large uncertainty remains in
estimating TC intensity. Additionally, the estimation of the TC
duration in the weak stage is unreliable, as it depends on the abso-
lute measures of TC intensity. Given that the TC eye generally
appears when the TC has reached typhoon/hurricane intensity,
our analysis only includes the TC events that reach at least
typhoon/hurricane intensity (maximum sustained winds 64
knots or 33 m/s) during their lifetime. Excluding the data of
TCs that do not reach typhoon/hurricane intensity to our analysis
does not significantly alter our conclusions (Fig. S1 online).

There is considerable uncertainty in estimating TC intensity in
both TC datasets when a TC is in the weak stage. The estimation
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of the TC duration in the weak stage is also unreliable since it is
based on absolute measures of TC intensity. Considering the poor
quality of TC data during the weak stage, we entirely exclude peri-
ods in which TC events have not reached typhoon or hurricane
intensity.

The ACE index convolves duration and intensity information for
each individual TC around the globe [12]. Moreover, it is also used
as a representative of TC energy available for ocean mixing or the
size of TC-affected areas [37]. In general, the TC season in the
Northern Hemisphere is defined as a continuous period of the cal-
endar year, while the TC season in the Southern Hemisphere is
defined as a continuous period from 1 July of the last calendar year
to 30 June of the calendar year as the seasonal distribution of TC
activity in the southern hemisphere straddles the calendar year.
Such inconsistency between the two hemispheres is inadequate
to investigate the variation in global TC activity. In this study, the
60-month running average of ACE (the mean value of the current
month, the preceding 29 months, and the following 30 months)
is calculated for each month, to eliminate the high-frequency vari-
ation in the time series of the ACE.

Before conducting the correlation analysis between the ACE
index and climate mode time series, we detrended the global
ACE time series based on the 1970–2019 period. To verify consis-
tency, we calculated the global ACE correlation for both the
1970–2019 and 1981–2019 periods, obtaining similar results: a
correlation of 0.75 (P < 0.01) with the IPO and 0.81 (P < 0.01) with
VWS. In our results analysis, we focus primarily on the variation of
global ACE during the 1981–2019 period.

As suggested by previous studies [28,31,38,39], there is an out-
of-phase relationship of TC activity between the eastern North
Pacific and North Atlantic basins. For a better understanding of
the variations in eastern North Pacific/North Atlantic TCs [31,39]
and for reducing the damage they cause [38], it would be better
to consider both ocean basins together.

2.2. IPO index

The IPO is the dominant mode of interdecadal variability with
an SST pattern similar to that of ENSO, and it is characterized by
a ‘warm-tongue’ SST anomalies pattern with positive SST anoma-
lies over the central and eastern parts of the tropical Pacific and
negative anomalies over the western part of the Pacific in both
hemispheres [40,41]. The IPO index is calculated based on the dif-
ferences between the SST anomaly averaged over the central equa-
torial Pacific (10�S–10�N, 170�E–90�W) and the SST anomaly in the
northwest (25�–45�N, 140�E–145�W) and southwest (50�–15�S,
150�E–160�W) Pacific [42].

2.3. GPI diagnosis

The GPI [43] is used to quantitatively determine the effect of
environmental factors on the variations in TC genesis, which is
expressed as

GPI 105g
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where s the absolute vorticity at 850 hPa (/s), H is the relative
humidity at 700 hPa (%) is the potential intensity (in terms of
maximum wind; m/s), an (m/s) is the vertical wind shear
between the horizontal winds at 200 hPa and 850 hPa levels. The
potential intensity is obtained from sea surface conditions and ver-
tical profiles of atmospheric conditions and the technical details of
the calculation are available in Ref. [44]. The relative importance of
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Fig. 1. Interdecadal variation in global ACE. (a) Time series of the 60-month running
average of ACE for global TCs (black line) obtained from the best-track dataset for
each month from 1970–2019; coherent variability of the detrended global ACE
(blue solid line) with the IPO index (red dotted line; R = 0.75; P < 0.01) and the area
index of the VWS (cyan dashed line; R = 0.81; P < 0.01). The 60-month running
average of the IPO index and VWS area index are calculated. The grey belt
represents the historical peak in the 1992–1996 pentad. The red shading represents
data from before the 1980s, which is considered less reliable. (b) The anomalies of
ACE with a 2.5� 2.5� grid in the boreal summer during June–October for the NH
and boreal winter during December–April for the SH in the 1992–1996 pentad
relative to the historical period of 1981–2019. The black squares indicate
significance at the 95% confidence level.
period while the other three environmental factors are fixed at their
climatological values [45]. To further confirm the effect of VWS, a
dynamic GPI [46] is applied, defined as follows:

Dynamic GPI 2 0 0 1DV 1 7 5 5 105 du
dy

2 3

5 0 20x 3 4 5 5 105g
2 4
e 11 8 1 0

2

where and e the same as in Eq. (1) presents the vertical
wind velocity (Pa/s) at 500 hPa, enotes the zonal wind (m/s) at
500 hPa, and represents the meridional shear vorticity (/
s) associated with detailed description of the DGPI computation
can be found in Ref. [46,47].
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2.4. VWS area index

Larger VWS could suppress TC genesis by disrupting the orga-
nized deep convection (the so-called ventilation effect), and vice
versa [48]. VWS is calculated as the difference between the hori-
zontal winds at 200 hPa and 850 hPa levels. The monthly mean
wind fields with a horizontal resolution of 0.25� 0.25� are
obtained from the European Centre of Medium-range Weather
Forecasts Reanalysis v.5 (ERA5) global reanalysis [49].

Here, the area index of VWS is defined as the sum of areas in the
tropical ocean (30�N–30�S) where VWS is below a given threshold.
The VWS area index time series remain highly consistent across
different latitude bands as the VWS area index represents the area
of low VWS values, which are primarily concentrated in the tropi-
cal ocean. The VWS of 4 m/s is used as the threshold in the defini-
tion of the VWS area index in this study. A sensitivity analysis is
conducted to examine the robustness of this correlation relation-
ship for different VWS thresholds (Fig. S2 online). It is suggested
that the VWS area index can well explain the interdecadal variabil-
ity of global ACE, with correlation coefficients of about 0.80
(P < 0.01) when the threshold of VWS is within the range of 3–
8 m/s. The 60-month running mean values of the global ACE and
VWS area index were calculated prior to performing the correla-
tion analysis.

2.5. CMIP6 models

To estimate the relative contributions of anthropogenic warm-
ing and internal climate variability to the interdecadal variation
in global ACE, we use the AMIP experiments and historical simula-
tions from CMIP6models [50]. The AMIP experiments are forced by
the observed SST and sea ice concentration, and the CMIP6 histor-
ical simulations are derived by the coupled ocean–atmosphere
models. CMIP6 models generally have coarse resolution and do
not explicitly resolve TC dynamics. The VWS area index is used
as a proxy of the interdecadal variation in global ACE, given that
there is a close correlation between them (Fig. 1), with a correla-
tion coefficient of 0.81 (P < 0.01). The VWS area index in model
simulation results is calculated using the same definition and
threshold as in observational data. The variables used to calculate
the VWS area index include monthly horizontal winds at 850 hPa
and 200 hPa. We produce a multi-model ensemble by averaging
the simulations of 20 models with CMIP and AMIP simulations
(Table S1 online).

To further isolate the role of IPO in the interdecadal variation of
TC activity, we have estimated the VWS area index series based on
the multi-model mean of the hist-resIPO experiments. The hist-
resIPO experiment is a pacemaker-coupled historical climate sim-
ulation designed to isolate the impact of the IPO, which includes all
forcings used in CMIP6 historical simulations and the observed his-
torical SST restored in the tropical lobe of the IPO domain [51]. All
available models with the outputs needed of the hist-resIPO
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experiments are used: FGOALS-f3-L (three realizations), FIO-ESM-
2-0 (one realization) and MRI-ESM2-0 (three realizations). The
mean value of the realizations of each model is first obtained,
and then the multi-model mean is calculated.

3. Interdecadal variation in the global ACE

Here, we consider global TC activity by analyzing ACE [12],
which is defined in this study as the monthly sum of the squares
of wind speeds for all TCs over a specific ocean basin or worldwide.
Although satellite observations began in the 1970s, global coverage
was only achieved by the 1980s, so we focus primarily on changes
in global ACE since the 1980s. A striking interdecadal variation in
the global ACE since the 1980s is observed. In Fig. 1a, the 60-
month running average of the global ACE based on the best-track
dataset [35] peaked in the 1992–1996 pentad and subsequently
declined by approximately 40% from the late 1990s through the
early 2010s. Then, the global ACE reached a low value near the
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Fig. 2. Contribution of individual parameters to the interdecadal variation in the
global ACE. Time series of the individual parameters of TCs, including number (red
line), duration (blue line), and intensity (green line) obtained from the best-track
dataset in each month from 1981–2019; the relative contribution of each parameter
to the global ACE in the 1992–1996 pentad relative to the historical period of 1981–
2019 is shown in brackets. The 60-month running averages of TC number, duration,
and intensity are presented.
end of the 2010s. The low value of global ACE near the 2010s is
consistent with previous research [28], which attributed this
decline to large-scale climate modes such as the El Niño Southern
Oscillation and the Pacific Decadal Oscillation. These findings sug-
gest that global climate change during the past few decades, char-
acterized by an indisputable warming trend in ocean temperatures
[52,53], has not resulted in a directly detectable trend in global
ACE. Furthermore, another metric, the power dissipation index
[1] which is defined in a similar way but using the cube of the wind
speed instead of the square (see Methods), also shows evident
interdecadal variation (Fig. S3 online).

At the basin-wide scale (Fig. S4 online), the ACE in the pentad of
1992–1996 was approximately 25 % above average in the western
North Pacific, South Pacific, and South Indian basins. In the eastern
North Pacific and North Atlantic basins, which are considered as a
whole due to their out-of-phase relationship with regard to TC
activity [28,31,38,39], a local maximum of ACE in the 1992–1996
pentad is observed, approximately 10% above average. All major
ocean basins contribute positively to the interdecadal variation in
global ACE (Fig. 1b), demonstrating the robustness of this phe-
nomenon. Notably, our results remain consistent regardless of
the time window length (Fig. S5 online).

Although many previous studies have emphasized the effect of
the IPO in moderating regional TC activity [31–33,54,55], how it
affects global TC activity remains unknown. Here we examine
whether the interdecadal variability of the global ACE is linked to
the IPO. As shown in Fig. 1, the IPO underwent its positive phase
at approximately the same time that the global ACE reached its his-
torical peak. A strong correlation between the time series of the
detrended global ACE (blue solid line) and the IPO index (red dotted
line) is observed in Fig. 1a, with a correlation coefficient of 0.75
(P < 0.01). To further confirm the robustness of this correlation,
TC data from 1981–2017 from the Advanced Dvorak Technique-
Hurricane Satellite (ADT-HURSAT; see Methods) dataset were also
used. The TC data of the ADT-HURSAT dataset are derived from
satellite images with an 8 km horizontal resolution [6,36]. A statis-
tically significant correlation is found between the interdecadal
variability of global ACE obtained from the ADT-HURSAT dataset
and the IPO index (Fig. S6 online). This consistency between the
two datasets suggests that the relationship between the inter-
decadal variability of global TC activity and the IPO index is reliable.
4. Relative contributions from individual TC parameters

To understand the driving force behind the interdecadal vari-
ability of the global ACE, the relative contributions of individual
TC parameters are examined. Note that ACE can be expressed as
a multiplication of three statistical TC parameters: number, dura-
tion, and intensity [56]. As shown in Fig. 2, the time series of global
TC number and duration display interdecadal variations, with a
historical peak in the 1990s. Our findings align with previous stud-
ies suggesting that there is no clear evidence of a trend in global TC
number due to the limited period of reliable TC observations and
the influence of interdecadal variability [5,16,25,57]. While global
warming has indeed caused TC tracks to shift poleward since the
1980s [58–60], this shift has not introduced a long-term trend in
global TC duration. In contrast, TC intensity shows an upward
trend with some fluctuations (Fig. 2). Additionally, we calculated
the correlations between the IPO and variations in TC frequency,
duration, and intensity, yielding correlation coefficients of 0.76
(P < 0.01), 0.56 (P < 0.01), and 0.17 (P > 0.05), respectively. These
results suggest that TC frequency and duration may play a signifi-
cant role in the influence of the IPO on global ACE.

Furthermore, we quantitatively assessed the relative contribu-
tions of individual TC parameters to the historical peak in global
946
ACE during the 1992–1996 pentad. The relative contributions of
TC number and duration to the historical peak in the global ACE
in the 1992–1996 pentad are approximately 51% and 36%, respec-
tively (jointly, accounting for around 87%). In contrast, TC intensity
plays a relatively minor role, contributing around 13%. The robust-
ness of these findings has been confirmed through a sensitivity
analysis on the choice of typical periods (Table S2 online).

Given that the interdecadal variability of the global ACE is lar-
gely due to variations in TC number and duration, the variations
in TC genesis density and track density may have to be paid atten-
tion. Focusing on the historical peak in the 1992–1996 pentad, one
of the most prominent features of this interdecadal variation in the
global ACE, it is found that the number of TCs that occurred in the
1992–1996 pentad increased over the central tropical Pacific and
the eastern parts of other regions (Fig. 3a). A quantitative analysis
indicates that the anomalies in TC genesis (Fig. S7 online) are lar-
gely responsible for the positive anomalies in TC track density
(Fig. 3b). This result is not surprising. An anomalous increase in
TC genesis number in the eastern part can lead to more TCs passing
through the area, and TCs generated further east typically have a
longer duration before encountering the continent or cold water
[32,33,54].

5. The effect of the VWS

Next, we investigate the cause of TC genesis anomalies. Fig. 3c
shows the anomalies of the genesis potential index (GPI) in the
1992–1996 pentad [43]. The anomalies of GPI could largely repre-
sent the characteristics of the observed variations in TC genesis
density (Fig. 3a), despite regional inconsistencies in the western
North Pacific and North Atlantic basins. The effects of the four indi-
vidual factors involved in the GPI were assessed. As shown in
Fig. 3d, the vertical wind shear (VWS) is the major contributor to
the anomalies in the GPI, while little contribution is made by other
factors (Fig. S8 online). A larger VWS could suppress TC genesis by
disrupting organized deep convection, and vice versa [48]. The pri-
mary role of the VWS was confirmed (Fig. S9 online) when the
dynamic GPI was used [46]. These results suggest that the VWS
strongly controls TC genesis anomalies and thus the variation in
the ACE.

To accurately illustrate the effect of the VWS on the inter-
decadal variability of the global ACE, an area index of the VWS is
proposed, which is defined as the sum of areas where the VWS is
below a given threshold. The time series of the VWS area index
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Fig. 3. TC genesis modulated by the IPO. The anomalies of (a) TC genesis density and (b) TC track density over a 2.5� 2.5� grid obtained from the best-track dataset in the
boreal summer during June–October and boreal winter during December–April in the 1992–1996 pentad relative to the historical period of 1981–2019. The black squares
indicate significance at the 95% confidence level. The anomalies of (c) the GPI calculated based on the ECMWF and ERA-5 datasets and (d) the GPI for varying VWS with other
factors as climatology. (e) The anomalies of SST obtained from the ECMWF dataset. (f) Regression of the VWS area index onto the SST. The 60-month running average of the
VWS area index and SST is calculated before the regression analysis.
(cyan dashed line in Fig. 1a) exhibits interdecadal variation that is
highly consistent with the time series of the detrended global ACE
derived from the best-track dataset (blue solid line in Fig. 1a), with
a correlation coefficient of 0.81. This strong correlation between
the VWS area index and interdecadal variability of the global ACE
was also confirmed based on the ADT-HURSAT dataset (Fig. S6
online), with a correlation coefficient of 0.75 (P < 0.01). This rela-
tionship remains robust when different VWS thresholds are chosen
(Fig. S2 online).

6. The role of the IPO

Variations in the VWS are closely related to changes in large-
scale atmospheric circulation driven by the zonal gradient of SST.
Coinciding with the decreased VWS over the central-eastern trop-
ical Pacific in the 1992–1996 pentad (Fig. 3d), easterly wind
anomalies at the 200 hPa level and westerly wind anomalies at
the 850 hPa level along the tropical Pacific are observed (Fig. S10
online). A ‘warm tongue’ SST anomaly pattern was found in the
1992–1996 pentad, with positive anomalies over the central-
eastern tropical Pacific and negative anomalies over the western
part of the Pacific in both hemispheres, corresponding to a positive
phase of the IPO (Fig. 3e). As a result, the zonal gradient of SST in
the tropical Pacific was reduced, leading to a weakenedWalker cir-
culation, which is consistent with the observed easterly wind
anomalies at the 200 hPa level and the westerly wind anomalies
at the 850 hPa level (Fig. S10 online). The modest changes over
the eastern North Pacific and North Atlantic basins could be
explained by the influence of other climate modes, e.g., the Atlantic
Multidecadal Oscillation as suggested in previous studies [38,39].
Many studies [10,33,61] have emphasized the role of the IPO in
947
affecting large-scale atmospheric circulation over the tropical Paci-
fic. Recent modelling experiments revealed that the IPO could
affect the variation in tropical Atlantic sea surface temperature
remotely [62,63]. To further confirm the relationship between
the variability of the VWS and the IPO, we regress the VWS area
index onto the SST. The regression features warming over the
central-eastern tropical Pacific and cooling in the western part of
the Pacific (Fig. 3f), which resembles the positive IPO pattern.

To quantify the relative contributions of anthropogenic warm-
ing and internal climate variability to the interdecadal variability
of global ACE over the past few decades, different kinds of experi-
ments have been employed. Given the highly consistent relation-
ship between the VWS area index and the interdecadal variation
in the global ACE, we use the VWS area index as a proxy. The
multi-model mean of historical simulations from twenty models
of the Coupled Model Inter-comparison Project Phase (CMIP6)
and Atmospheric Model Intercomparison Project (AMIP) experi-
ments [50] from these models were calculated. The VWS area
index calculated based on the AMIP simulations (blue line) can
explain the interdecadal variability of the global ACE well, with a
correlation coefficient of 0.78 (P < 0.01). In contrast, there is little
correlation (R = 0.02; P > 0.05) between the detrended global ACE
and VWS area index based on the multi-model mean of the CMIP
simulations. When focusing on the models that can capture the
relationship between the IPO and the VWS area index (Table S3
online), a similar conclusion can be drawn (Fig. S11 online): the
VWS area index from the AMIP simulations explains the inter-
decadal variability of global ACE well. In contrast, the CMIP simu-
lations perform poorly. These findings suggest that internal climate
variability plays a significant role in moderating the interdecadal
variability of global ACE over the past few decades.
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Fig. 4. Comparison of the simulated VWS area index and interdecadal variation in global ACE. Coherent variability between the detrended global ACE (black line) obtained
from the best-track dataset for each month from 1981–2014 and the VWS area index calculated from the multi-model mean of the CMIP simulations (grey line; R = 0.02;
P > 0.05), the VWS area index calculated from the AMIP simulations (blue line; R = 0.78; P < 0.01), and the VWS area index calculated from the hist-resIPO simulations (red
line; R = 0.91; P < 0.01). The 60-month running mean values of the global ACE and VWS area index were calculated prior to performing the correlation analysis.
To isolate the role of the IPO, we estimated the VWS area index
series based on the multi-model mean of the experiments that are
forced by the observed IPO (hist-resIPO; see Methods). Based on
the multi-model mean of the hist-resIPO experiments, there is a
significant correlation between the detrended global ACE and
VWS area index time series, with a correlation coefficient of 0.91
(P < 0.01). Additionally, the spatial distribution of VWS is well cap-
tured in the CMIP, AMIP, and hist-resIPO simulations, with spatial
correlation coefficient R > 0.90 (P < 0.01) across all simulations
(Fig. S12 online). This high spatial correlation across simulations
confirms the meaningfulness of using the time series correlation
coefficient for comparison. These findings further confirm that
the IPO plays a crucial role in moderating the interdecadal variabil-
ity of global TC activity..

7. Discussion

The globally averaged temperature has experienced a warming
trend of 0.5�C over the past four decades [52,53], whereas the
global ACE has not exhibited trend-like variability, but rather dis-
tinct interdecadal variability, with a historical peak in the 1990s.
Our analysis shows that the interdecadal variability of global ACE
is closely related to the IPO, with a correlation coefficient of 0.75
(P < 0.01). The IPO in the positive phase boosts more TCs with a
longer lifetime by causing a greater coverage of weak VWS condi-
tions, thus increasing the global ACE, and vice versa. The newly
introduced VWS area index calculated based on AMIP simulations
can explain the interdecadal variability of the global ACE well,
while CMIP simulations show poor performances. By calculating
the time series of the VWS area index based on hist-resIPO exper-
iments, the IPO is confirmed to play a crucial role in moderating
the interdecadal variation in global TC activity. Although a previ-
ous study has suggested that the IPO may shift from its negative
phase to its positive phase in the coming decades [30], the exact
timing of the IPO phase transition remains uncertain. When the
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IPO does shift to its positive phase, government officials, emer-
gency managers, and the local community concerned must be well
prepared to respond appropriately, as global TC activity could
experience substantial enhancement, resembling levels observed
in the 1990s.

Given the influence of the IPO on global TC activity, it is intrigu-
ing to discuss the underlying mechanism of its decadal evolution
[64]. As recent research suggests [19,20,65], model bias in response
to a given radiative forcing may be a major reason for the low con-
fidence in the simulation results of the IPO, despite uncertainties in
future emissions scenarios and internal climate variations. Many
current climate models show that the SST in the tropical Pacific
evolves to a more El Niño-like state against a greenhouse gas-
induced warming, while observations show the opposite trend
towards a more La Niña-like state [18]. Note that the tropical Paci-
fic SST largely influences atmospheric circulation changes (e.g.,
VWS), and thus TC activity [10,33]. Here we discuss two possibili-
ties: 1) the model bias in response to greenhouse gas warming
could be considered random, and a meaningful simulation can be
performed based on the multimodal mean; 2) most models incor-
rectly simulate the radiatively forced upper ocean warming pat-
tern in the tropical Pacific, with similar error types and signs. If
the model bias was considered to be random, it would contribute
less to the discrepancy in the multi-model mean of the simulation
results between the CMIP and AMIP simulations as shown in Fig. 4
of our study. Note that the internal variability is largely suppressed
in the multi-model mean of the CMIP simulations, which, by con-
trast, is reflected in the multi-model mean of the AMIP simulations.
That is, internal climate variability has dominated the evolution of
the IPO over the past few decades and thus the interdecadal vari-
ability of global TC activity. In contrast, if there is a common model
bias in simulating the radiative forced upper ocean warming pat-
tern in the tropical Pacific, its impact on the multi-model mean
of the simulations is not negligible. Thus, the discrepancy between
the CMIP and AMIP simulations may be induced by the model bias
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and internal variability jointly. A recent study revealed that after
removing the model bias of the tropical Pacific SST pattern, the
interdecadal variation in tropical Atlantic SSTs was attributed to
anthropogenic emissions and volcanic aerosols during the past
few decades [66]. Similarly, we cannot rule out the possibility that
the IPO may be partly affected by external forcings, but here we
find that the IPO is a main driver of the interdecadal variability
of global TC activity. Hence, confidence in future projections of
TC activity relies on the level of scientific understanding of the
physical mechanisms that affect the IPO.
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